• Login
    View Item 
    •   DSpace Home
    • College of Engineering (CEN)
    • Department of Chemical and Biological Engineering
    • View Item
    •   DSpace Home
    • College of Engineering (CEN)
    • Department of Chemical and Biological Engineering
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Review on Triggered Liposomal Drug Delivery with a Focus on Ultrasound

    Thumbnail
    View/ Open
    43Review(CCDT).pdf (3.323Mb)
    Date
    2015
    Author
    Moussa, Hesham Gamal
    Martins, Ana M.
    Husseini, Ghaleb
    Advisor(s)
    Unknown advisor
    Type
    Peer-Reviewed
    Article
    Postprint
    Metadata
    Show full item record
    Abstract
    Chemotherapy is widely used for cancer treatment; however, it causes unwanted side effects in patients. To avoid these adverse effects, nanocarriers have been developed, which can be loaded with the chemotherapeutic agents, directed to the cancer site and, once there, are exposed to stimuli that will trigger the drug release. Liposomes can be chemically modified to increase their circulation time, their stability, and their sensitivity to specific stimulus. Additionally, ligands can be conjugated to their surface, allowing for their specific binding to receptors overexpressed on the surface of cancer cells and the subsequent internalization via endocytosis. Using a triggering mechanism, including temperature, ultrasound, enzymes or a change in pH, the release of the drug is controlled and induced inside the cells, hence avoiding drug release in systemic circulation, which in turn reduces the undesired side effects of conventional chemotherapy. Ultrasound has been widely studied as a drug release trigger from liposomes, due to its well-known physics and previous uses in medicine. This review focuses on liposome-based drug delivery systems, using different trigger mechanisms, with a focus on ultrasound. The physical mechanisms of ultrasound release are also investigated and the results of in vitro and in vivo studies are summarized.
    DSpace URI
    http://hdl.handle.net/11073/21308
    External URI
    https://doi.org/10.2174/1568009615666150311100610
    Collections
    • Department of Chemical and Biological Engineering

    Browse

    All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsCollege/DeptArchive ReferenceSeriesThis CollectionBy Issue DateAuthorsTitlesSubjectsCollege/DeptArchive ReferenceSeries

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    DSpace software copyright © 2002-2016  DuraSpace
    Submission Policies | Terms of Use | Takedown Policy | Privacy Policy | About Us | Contact Us | Send Feedback

    Return to AUS
    Theme by 
    Atmire NV