• Login
    View Item 
    •   DSpace Home
    • College of Engineering (CEN)
    • Department of Chemical Engineering
    • View Item
    •   DSpace Home
    • College of Engineering (CEN)
    • Department of Chemical Engineering
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Ultrasonic Drug Delivery Using Micelles and Liposomes

    Thumbnail
    View/ Open
    44Handbook.pdf (818.8Kb)
    Date
    2016
    Author
    Martins, Ana M.
    Ahmed, Salma E.
    Vitor, Rute F.
    Husseini, Ghaleb
    Advisor(s)
    Unknown advisor
    Type
    Book chapter
    Postprint
    Metadata
    Show full item record
    Abstract
    The encapsulation of drugs in nanocarriers revolutionized research in drug delivery, especially in cancer chemotherapeutics. Several nanosystems have been developed including liposomes, polymeric micelles, dendrimers, solid lipid nanoparticles, and others. The surface of nanocarriers can be modified to alter their characteristics and improve their efficiency as drug delivery systems. The addition of polyethylene glycol chains, for example, increases the blood circulation time of nanocapsules and, in some cases, improves their stability. Once the structure of nanocarriers is optimized, the next logical step is to explore the feasibility of using one or several trigger mechanisms to release their therapeutic contents at the required time and space. Abundant literature is available on both internal and external trigger mechanisms in cancer drug delivery. Internal mechanisms include changes in pH, enzyme concentration, and temperature, while external mechanisms include light, magnetic/electromagnetic waves, and acoustic power. This review focuses on the utility of ultrasound and polymeric micelles in cancer drug delivery. The idea is to control the release of chemotherapeutics from micelles to cancerous cells by focusing the ultrasound waves on the diseased tissue while sparing other healthy cells in the body. Thus, the side effects of conventional chemotherapy can be minimized.
    DSpace URI
    http://hdl.handle.net/11073/21326
    External URI
    https://doi.org/10.1007/978-981-287-470-2_29-1
    Collections
    • Department of Chemical Engineering

    Browse

    All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsCollege/DeptArchive ReferenceSeriesThis CollectionBy Issue DateAuthorsTitlesSubjectsCollege/DeptArchive ReferenceSeries

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    DSpace software copyright © 2002-2016  DuraSpace
    Submission Policies | Terms of Use | Takedown Policy | Privacy Policy | About Us | Contact Us | Send Feedback

    Return to AUS
    Theme by 
    Atmire NV