• Login
    View Item 
    •   DSpace Home
    • College of Engineering (CEN)
    • Department of Chemical and Biological Engineering
    • View Item
    •   DSpace Home
    • College of Engineering (CEN)
    • Department of Chemical and Biological Engineering
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Ultrasound‑triggered herceptin liposomes for breast cancer therapy

    Thumbnail
    View/ Open
    Elamir_et_al-2021-Scientific_Reports.pdf (2.300Mb)
    Date
    2021
    Author
    Elamir, Amal
    Ajith, Saniha Aysha
    AlSawaftah, Nour Majdi
    Abuwatfa, Waad Hussein
    Mukhopadhyay, Debasmita
    Paul, Vinod
    Al-Sayah, Mohammad
    Awad, Nahid S.
    Husseini, Ghaleb
    Advisor(s)
    Unknown advisor
    Type
    Peer-Reviewed
    Article
    Published version
    Metadata
    Show full item record
    Abstract
    The functionalization of liposomes with monoclonal antibodies is a potential strategy to increase the specificity of liposomes and reduce the side-effects associated with chemotherapeutic agents. The active targeting of the Human Epidermal growth factor Receptor 2 (HER2), which is overexpressed in HER2 positive breast cancer cells, can be achieved by coating liposomes with an anti-HER2 monoclonal antibody. In this study, we synthesized calcein and Doxorubicin-loaded immunoliposomes functionalized with the monoclonal antibody Trastuzumab (TRA). Both liposomes were characterized for their size, phospholipid content and antibody conjugation. Exposing the liposomes to low-frequency ultrasound (LFUS) triggered drug release which increased with the increase in power density. Trastuzumab conjugation resulted in enhancing the sensitivity of the liposomes to LFUS. Compared to the control liposomes, TRA-liposomes showed higher cellular toxicity and higher drug uptake by the HER2 + cell line (SKBR3) which was further improved following sonication with LFUS. Combining immunoliposomes with LFUS is a promising technique in the field of targeted drug delivery that can enhance efficiency and reduce the cytotoxicity of antineoplastic drugs.
    DSpace URI
    http://hdl.handle.net/11073/21389
    External URI
    https://doi.org/10.1038/s41598-021-86860-5
    Collections
    • Department of Biology, Chemistry and Environmental Sciences
    • Department of Chemical and Biological Engineering

    Browse

    All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsCollege/DeptArchive ReferenceSeriesThis CollectionBy Issue DateAuthorsTitlesSubjectsCollege/DeptArchive ReferenceSeries

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    DSpace software copyright © 2002-2016  DuraSpace
    Submission Policies | Terms of Use | Takedown Policy | Privacy Policy | About Us | Contact Us | Send Feedback

    Return to AUS
    Theme by 
    Atmire NV