• Login
    View Item 
    •   DSpace Home
    • College of Engineering (CEN)
    • Department of Chemical and Biological Engineering
    • View Item
    •   DSpace Home
    • College of Engineering (CEN)
    • Department of Chemical and Biological Engineering
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Parametric Study of a Single Effect Lithium Bromide-Water Absorption Chiller Powered by a Renewable Heat Source

    Thumbnail
    View/ Open
    Parametric Study of a Single Effect Lithium Bromide-Water Absorption Chiller Powered by a Renewable Heat Source.pdf (749.5Kb)
    Date
    2020
    Author
    Tawalbeh, Muhammad
    Salameh, Tareq
    Albawab, Mona
    Al-Othman, Amani
    Assad, Mamdouh El Haj
    Alami, Abdul H.
    Advisor(s)
    Unknown advisor
    Type
    Peer-Reviewed
    Article
    Published version
    Metadata
    Show full item record
    Abstract
    This work investigates the performance of a single-effect absorption chiller utilizing an aqueous lithium bromide solution as the working fluid and driven by hot fluid rejected from either a geothermal power plant or the outlet of a thermal solar collector. This relatively low enthalpy return fluid, which will otherwise be reinjected back into the earth, will be utilized as the thermal energy source of the chiller. Although such chillers are considered low-grade energy refrigeration cycles, the one proposed here has an advantage in terms of economy and efficiency. A parametric analysis is performed using Engineering Equation Solver software and is used to highlight the effect of the heat exchanger size on the coefficient of performance of the chiller. The analysis proved that the proposed device can operate with excellent cooling capacity, reaching 16 kW, and a relatively high coefficient of performance (~ 0.7) while being driven by the low-grade energy. The heat source temperature, solution heat exchanger effectiveness and the size of the absorber were shown to be key parameters for the design and operation of absorption chillers. Moreover, increasing the heat source mass flow rate has a significant impact on both cooling capacity and coefficient of performance at low values (< 10 kg/s) and unnoticeable impact at higher values (> 10 kg/s).
    DSpace URI
    http://hdl.handle.net/11073/21394
    External URI
    https://doi.org/10.13044/j.sdewes.d7.0290
    Collections
    • Department of Chemical and Biological Engineering

    Browse

    All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsCollege/DeptArchive ReferenceSeriesThis CollectionBy Issue DateAuthorsTitlesSubjectsCollege/DeptArchive ReferenceSeries

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    DSpace software copyright © 2002-2016  DuraSpace
    Submission Policies | Terms of Use | Takedown Policy | Privacy Policy | About Us | Contact Us | Send Feedback

    Return to AUS
    Theme by 
    Atmire NV