• Login
    View Item 
    •   DSpace Home
    • College of Engineering (CEN)
    • Department of Civil Engineering
    • View Item
    •   DSpace Home
    • College of Engineering (CEN)
    • Department of Civil Engineering
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Non-Destructive Water Leak Detection Using Multitemporal Infrared Thermography

    Thumbnail
    View/ Open
    Non-Destructive_Water_Leak_Detection_Using_Multitemporal_Infrared_Thermography.pdf (2.785Mb)
    Date
    2021
    Author
    Yahia, Mohamed
    Gawai, Rahul
    Ali, Tarig
    Mortula, Maruf
    Albasha, Lutfi
    Landolsi, Taha
    Advisor(s)
    Unknown advisor
    Type
    Article
    Peer-Reviewed
    Published version
    Metadata
    Show full item record
    Abstract
    Waterleakage detection and localization in distribution networks pipelines is a challenge for utility companies. For this purpose, thermal Infrared Radiation (IR) techniques have been widely applied in the literature. However, the classical analysis of IR images has not been robust in detecting and locating leakage, due to presence of thermal anomalies such as shadows. In this study, to improve the detection and location accuracy, a digital image processing tool based on multitemporal IR is proposed. In multitemporal IR analysis, the variation of soil's temperature due to field temperature can be obtained; and hence; estimating variations due to water leakage would be more accurate. An experimental setup was built to evaluate the proposed multitemporal IR water leak detection method. In order to consider the temporal temperature variation due to water leakage and mitigate the field temperature effects, a luminance transformation of the IRimages was introduced. To determine the temporal temperature variation of the soil's surface due to the leakage, several metrics have been considered such as the difference, the ratio, the log-ratio and the coefficient variation (CV) images. Based on the experimental results, the log-ratio and the CVimages were the most robust metrics. Then, based on log-ratio or the CV image, a temporal variation image (TVI) that traduces the temporal IR luminance variation was introduced. The analysis of the TVI image showed that the CV image is less noisy than the log-ratio image, and can more accurately locate the leakage. Finally, based on TVI histogram, a threshold was de ned to classify the TVI image into leakage/non-leakage areas. Results showed that the proposed method is capable of accurately detecting and locating water leakage, which is an improvement to the false detections of spatial thermal IR analysis.
    DSpace URI
    http://hdl.handle.net/11073/23906
    External URI
    https://doi.org/10.1109/ACCESS.2021.3078415
    Collections
    • Department of Civil Engineering
    • Department of Computer Science and Engineering
    • Department of Electrical Engineering

    Browse

    All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsCollege/DeptArchive ReferenceSeriesThis CollectionBy Issue DateAuthorsTitlesSubjectsCollege/DeptArchive ReferenceSeries

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    DSpace software copyright © 2002-2016  DuraSpace
    Submission Policies | Terms of Use | Takedown Policy | Privacy Policy | About Us | Contact Us | Send Feedback

    Return to AUS
    Theme by 
    Atmire NV