• Login
    View Item 
    •   DSpace Home
    • College of Engineering (CEN)
    • Department of Computer Science and Engineering
    • View Item
    •   DSpace Home
    • College of Engineering (CEN)
    • Department of Computer Science and Engineering
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Prediction of EV Charging Behavior Using Machine Learning

    Thumbnail
    View/ Open
    Prediction_of_EV_Charging_Behavior_Using_Machine_Learning.pdf (1.809Mb)
    Date
    2021
    Author
    Shahriar, Sakib
    Al-Ali, Abdul-Rahman
    Osman, Ahmed
    Dhou, Salam
    NIJIM, MAIS
    Advisor(s)
    Unknown advisor
    Type
    Article
    Peer-Reviewed
    Published version
    Metadata
    Show full item record
    Abstract
    As a key pillar of smart transportation in smart city applications, electric vehicles (EVs) are becoming increasingly popular for their contribution in reducing greenhouse gas emissions. One of the key challenges, however, is the strain on power grid infrastructure that comes with large-scale EV deployment. The solution to this lies in utilization of smart scheduling algorithms to manage the growing public charging demand. Using data-driven tools and machine learning algorithms to learn the EV charging behavior can improve scheduling algorithms. Researchers have focused on using historical charging data for predictions of behavior such as departure time and energy needs. However, variables such as weather, traffic, and nearby events, which have been neglected to a large extent, can perhaps add meaningful representations, and provide better predictions. Therefore, in this paper we propose the usage of historical charging data in conjunction with weather, traffic, and events data to predict EV session duration and energy consumption using popular machine learning algorithms including random forest, SVM, XGBoost and deep neural networks. The best predictive performance is achieved by an ensemble learning model, with SMAPE scores of 9.9% and 11.6% for session duration and energy consumptions, respectively, which improves upon the existing works in the literature. In both predictions, we demonstrate a significant improvement compared to previous work on the same dataset and we highlight the importance of traffic and weather information for charging behavior predictions.
    DSpace URI
    http://hdl.handle.net/11073/24053
    External URI
    https://doi.org/10.1109/ACCESS.2021.3103119
    Collections
    • Department of Computer Science and Engineering
    • Department of Electrical Engineering

    Browse

    All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsCollege/DeptArchive ReferenceSeriesThis CollectionBy Issue DateAuthorsTitlesSubjectsCollege/DeptArchive ReferenceSeries

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    DSpace software copyright © 2002-2016  DuraSpace
    Submission Policies | Terms of Use | Takedown Policy | Privacy Policy | About Us | Contact Us | Send Feedback

    Return to AUS
    Theme by 
    Atmire NV