• Login
    View Item 
    •   DSpace Home
    • College of Engineering (CEN)
    • Department of Computer Science and Engineering
    • View Item
    •   DSpace Home
    • College of Engineering (CEN)
    • Department of Computer Science and Engineering
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    AgroAId: A Mobile App System for Visual Classification of Plant Species and Diseases Using Deep Learning and TensorFlow Lite

    Thumbnail
    View/ Open
    informatics-09-00055-v2.pdf (2.284Mb)
    Date
    2022
    Author
    Reda, Mariam
    Suwwan, Rawan
    Alkafri, Seba
    Rashed, Yara
    Shanableh, Tamer
    Advisor(s)
    Unknown advisor
    Type
    Article
    Peer-Reviewed
    Published version
    Metadata
    Show full item record
    Abstract
    This paper aims to assist novice gardeners in identifying plant diseases to circumvent misdiagnosing their plants and to increase general horticultural knowledge for better plant growth. In this paper, we develop a mobile plant care support system (“AgroAId”), which incorporates computer vision technology to classify a plant’s [species–disease] combination from an input plant leaf image, recognizing 39 [species-and-disease] classes. Our method comprises a comparative analysis to maximize our multi-label classification model’s performance and determine the effects of varying the convolutional neural network (CNN) architectures, transfer learning approach, and hyperparameter optimizations. We tested four lightweight, mobile-optimized CNNs – MobileNet, MobileNetV2, NasNetMobile, and EfficientNetB0 – and tested four transfer learning scenarios (percentage of frozen-vs.-retrained base layers): (1) freezing all convolutional layers; (2) freezing 80% of layers; (3) freezing 50% only; and (4) retraining all layers. A total of 32 model variations are built and assessed using standard metrics (accuracy, F1-score, confusion matrices). The most lightweight, highaccuracy model is concluded to be an EfficientNetB0 model using a fully retrained base network with optimized hyperparameters, achieving 99% accuracy and demonstrating the efficacy of the proposed approach; it is integrated into our plant care support system in a TensorFlow Lite format alongside the front-end mobile application and centralized cloud database. Finally, our system also uses the collective user classification data to generate spatiotemporal analytics about regional and seasonal disease trends, making these analytics accessible to all system users to increase awareness of global agricultural trends.
    DSpace URI
    http://hdl.handle.net/11073/24065
    External URI
    https://doi.org/10.3390/informatics9030055
    Collections
    • Department of Computer Science and Engineering

    Browse

    All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsCollege/DeptArchive ReferenceSeriesThis CollectionBy Issue DateAuthorsTitlesSubjectsCollege/DeptArchive ReferenceSeries

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    DSpace software copyright © 2002-2016  DuraSpace
    Submission Policies | Terms of Use | Takedown Policy | Privacy Policy | About Us | Contact Us | Send Feedback

    Return to AUS
    Theme by 
    Atmire NV