On Weakly 1-Absorbing Primary Ideals of Commutative Rings

View/
Open
Date
2022Author
Badawi, Ayman
Celikel, Ece Yetkin
Advisor(s)
Unknown advisorType
Article
Peer-Reviewed
Postprint
Metadata
Show full item recordAbstract
Let R be a commutative ring with 1 ≠ 0. In this paper, we introduce the concept of weakly 1-absorbing primary ideal which is a generalization of 1-absorbing primary ideal. A proper ideal I of R is called a weakly 1-absorbing primary ideal if whenever nonunit elements a, b, c ∈ R and 0 ≠ abc ∈ I, then ab ∈ I or c ∈ √I. A number of results concerning weakly 1-absorbing primary ideals and examples of weakly 1-absorbing primary ideals are given. Furthermore, we give the correct version of a result on 1-absorbing primary ideals of commutative rings.DSpace URI
http://hdl.handle.net/11073/25072External URI
http://hdl.handle.net/11073/25072Collections
Related items
Showing items related by title, author, creator and subject.
-
On 1-absorbing primary ideals of commutative rings
Badawi, Ayman; Celikel, Ece Yetkin (World Scientific, 2019-04-30)Let R be a commutative ring with nonzero identity. In this paper, we introduce the concept of 1-absorbing primary ideals in commutative rings. A proper ideal I of R is called a 1-absorbing primary ideal of R if whenever ... -
n-Absorbing Ideals of Commutative Rings and Recent Progress on Three Conjectures: A Survey
Badawi, Ayman (Springer, 2017) -
On n-semiprimary ideals and n-pseudo valuation domains
Anderson, David F.; Badawi, Ayman (Taylor and Francis, 2020-08-14)