On 1absorbing primary ideals of commutative rings
Date
20190430Author
Badawi, Ayman
Celikel, Ece Yetkin
Advisor(s)
Unknown advisorType
Article
PeerReviewed
Postprint
Metadata
Show full item recordAbstract
Let R be a commutative ring with nonzero identity. In this paper, we introduce the concept of 1absorbing primary ideals in commutative rings. A proper ideal I of R is called a 1absorbing primary ideal of R if whenever nonunit elements a,b,c ∈ R and abc ∈ I, then ab ∈ I or c ∈ √I. Some properties of 1absorbing primary ideals are investigated. For example, we show that if R admits a 1absorbing primary ideal that is not a primary ideal, then R is a quasilocal ring. We give an example of a 1absorbing primary ideal of R that is not a primary ideal of R. We show that if a ring R is not a quasilocal, then a proper ideal I of R is a 1absorbing primary ideal of R if and only if I is a primary ideal. We show that if R is a Noetherian domain, then R is a Dedekind domain if and only if every nonzero proper 1absorbing primary ideal of R is of the form Pn for some nonzero prime ideal P of R and a positive integer n ≥ 1. We show that a proper ideal I of R is a 1absorbing primary ideal of R if and only if whenever I1I2I3 ⊆ I for some proper ideals I1, I2, I3 of R, then I1I2 ⊆ I or I3 ⊆ √I.DSpace URI
http://hdl.handle.net/11073/25073External URI
https://doi.org/10.1142/s021949882050111xCollections
Related items
Showing items related by title, author, creator and subject.

nAbsorbing Ideals of Commutative Rings and Recent Progress on Three Conjectures: A Survey
Badawi, Ayman (Springer, 2017) 
On Weakly 1Absorbing Primary Ideals of Commutative Rings
Badawi, Ayman; Celikel, Ece Yetkin (World Scientific, 2022)Let R be a commutative ring with 1 ≠ 0. In this paper, we introduce the concept of weakly 1absorbing primary ideal which is a generalization of 1absorbing primary ideal. A proper ideal I of R is called a weakly 1absorbing ... 
On nsemiprimary ideals and npseudo valuation domains
Anderson, David F.; Badawi, Ayman (Taylor and Francis, 20200814)