• Login
    View Item 
    •   DSpace Home
    • College of Engineering (CEN)
    • Department of Electrical Engineering
    • View Item
    •   DSpace Home
    • College of Engineering (CEN)
    • Department of Electrical Engineering
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Random Aerial Beamforming for Underlay Cognitive Radio with Exposed Secondary Users

    Thumbnail
    View/ Open
    Random Aerial Beamforming for Underlay Cognitive Radio with Exposed Secondary Users new.pdf (406.8Kb)
    Date
    2016
    Author
    Alaa, Ahmed M.
    Ismail, Mahmoud H.
    Tawfik, Hazim
    Advisor(s)
    Unknown advisor
    Type
    Article
    Preprint
    Peer-Reviewed
    Metadata
    Show full item record
    Abstract
    In this paper, we introduce the exposed secondary users problem in underlay cognitive radio systems, where both the secondary-to-primary and primary-to-secondary channels have a Line-of-Sight (LoS) component. Based on a Rician model for the LoS channels, we show, analytically and numerically, that LoS interference hinders the achievable secondary user capacity when interference constraints are imposed at the primary user receiver. This is caused by the poor dynamic range of the interference channels fluctuations when a dominant LoS component exists. In order to improve the capacity of such system, we propose to use an Electronically Steerable Parasitic Array Radiator (ESPAR) antenna at the secondary terminals. An ESPAR antenna involves a single RF chain and has a reconfigurable radiation pattern that is controlled by assigning arbitrary weights to M orthonormal basis radiation patterns via altering a set of reactive loads. By viewing the orthonormal patterns as multiple virtual dumb antennas, we randomly vary their weights over time creating artificial channel fluctuations that can perfectly eliminate the undesired impact of LoS interference. This scheme is termed as Random Aerial Beamforming (RAB), and is well suited for compact and low cost mobile terminals as it uses a single RF chain. Moreover, we investigate the exposed secondary users problem in a multiuser setting, showing that LoS interference hinders multiuser interference diversity and affects the growth rate of the SU capacity as a function of the number of users. Using RAB, we show that LoS interference can actually be exploited to improve multiuser diversity by boosting the effective number of users.
    DSpace URI
    http://hdl.handle.net/11073/8674
    External URI
    http://dx.doi.org/10.1109/TVT.2015.2466636
    Collections
    • Department of Electrical Engineering

    Browse

    All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsCollege/DeptArchive ReferenceSeriesThis CollectionBy Issue DateAuthorsTitlesSubjectsCollege/DeptArchive ReferenceSeries

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    DSpace software copyright © 2002-2016  DuraSpace
    Submission Policies | Terms of Use | Takedown Policy | Privacy Policy | About Us | Contact Us | Send Feedback

    Return to AUS
    Theme by 
    Atmire NV