• Login
    View Item 
    •   DSpace Home
    • College of Arts and Sciences (CAS)
    • Department of Mathematics and Statistics
    • View Item
    •   DSpace Home
    • College of Arts and Sciences (CAS)
    • Department of Mathematics and Statistics
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    On phi-Dedekind rings and phi-Krull rings

    Thumbnail
    View/ Open
    03anderson.pdf (150.0Kb)
    Date
    2005
    Author
    Badawi, Ayman
    Anderson, David F.
    Advisor(s)
    Unknown advisor
    Type
    Article
    Published version
    Peer-Reviewed
    Metadata
    Show full item record
    Abstract
    The purpose of this paper is to introduce two new classes of rings that are closely related to the classes of Dedekind domains and Krull domains. Let H = {R | R is a commutative ring with 1 and Nil(R) is a divided prime ideal of R}. Let R in H, T(R) be the total quotient ring of R, and let phi be the map from R into RNil(R) (the localization of R at Nil(R)) such that phi(a/b) = a/b for every a in R and b in R\ Z(R). Then phi is a ring homomorphism from T(R) into RNil(R), and phi restricted to R is also a ring homomorphism from R into RNil(R) given by phi(x) = x /1 for every x in R. A nonnil ideal I of R is said to be phi-invertible if phi(I) is an invertible ideal of phi(R). If every nonnil ideal of R is phi-invertible, then we say that R is a phi-Dedekind ring. Also, we say that R is a phi-Krull ring if phi(R) is the intersection of {Vi}, where each Vi is a discrete phi-chained overring of phi(R), and for every nonnilpotent element x in R , phi(x) is a unit in all but finitely many Vi. We show that the theories of phi-Dedekind and phi-Krull rings resemble those of Dedekind and Krull domains.
    DSpace URI
    http://hdl.handle.net/11073/9222
    External URI
    http://www.math.uh.edu/~hjm/Vol31-4.html
    Collections
    • Department of Mathematics and Statistics

    Browse

    All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsCollege/DeptArchive ReferenceSeriesThis CollectionBy Issue DateAuthorsTitlesSubjectsCollege/DeptArchive ReferenceSeries

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    DSpace software copyright © 2002-2016  DuraSpace
    Submission Policies | Terms of Use | Takedown Policy | Privacy Policy | About Us | Contact Us | Send Feedback

    Return to AUS
    Theme by 
    Atmire NV