• Login
    View Item 
    •   DSpace Home
    • College of Engineering (CEN)
    • Department of Chemical Engineering
    • View Item
    •   DSpace Home
    • College of Engineering (CEN)
    • Department of Chemical Engineering
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Targeting Breast Cancer Using Hyaluronic Acid-Conjugated Liposomes Triggered with Ultrasound

    Thumbnail
    View/ Open
    17JBN-3012 revised.pdf (360.7Kb)
    Date
    2021
    Author
    Ben-Daya, Mohamed
    Paul, Vinod
    Awad, Nahid S.
    AlSawaftah, Nour Majdi
    Al-Sayah, Mohammad
    Husseini, Ghaleb
    Advisor(s)
    Unknown advisor
    Type
    Peer-Reviewed
    Article
    Postprint
    Metadata
    Show full item record
    Abstract
    The successful targeting of tumors can be achieved by conjugating targeting moieties to nanoparticles. These modifications allow nannocarriers to achieve greater targeting specificity through binding to specific receptors overexpressed on the surface of the tumor cells. In this study, pegylated liposomes encapsulating the model drug/dye calcein and conjugated to hyaluronic acid (HA) molecules were successfully synthesized, and their ability to target HA receptors overexpressed on a breast cancer cell line was investigated in vitro. Low-frequency ultrasound (LFUS), applied at three different power densities (6.2, 9, and 10 mW/cm2) were used to trigger the release of the entrapped calcein. Both the control and HA-conjugated liposomes showed similar release profiles. HA conjugation to the liposomes resulted in a significant increase in calcein uptake by the breast cancer cell line MDA-MB-231 known for its CD44 (HA receptor) overexpression, while such an effect was not recorded with NIH-3T3, an embryonic mouse fibroblast, with low levels of CD44 expression. The application of low LFUS showed a significant enhancement of calcein uptake by MDA-MB-231 cells from our liposome compared to calcein uptake without cell exposure to ultrasound. These findings suggest that combining HA-conjugated liposomes with ultrasound is a promising drug delivery platform in breast cancer treatment.
    DSpace URI
    http://hdl.handle.net/11073/21278
    External URI
    https://doi.org/10.1166/jbn.2021.3012
    Collections
    • Department of Biology, Chemistry and Environmental Sciences
    • Department of Chemical Engineering
    • Department of Industrial Engineering

    Browse

    All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsCollege/DeptArchive ReferenceSeriesThis CollectionBy Issue DateAuthorsTitlesSubjectsCollege/DeptArchive ReferenceSeries

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    DSpace software copyright © 2002-2016  DuraSpace
    Submission Policies | Terms of Use | Takedown Policy | Privacy Policy | About Us | Contact Us | Send Feedback

    Return to AUS
    Theme by 
    Atmire NV